slides

Global behavior of the height/seasonal structure of tides between 40 deg and 60 deg latitude

Abstract

The radars utilized are meteor (2), medium frequency (2) and the new low frequency (1) systems: analysis techniques were exhaustively studied internally and comparatively and are not thought to affect the results. Emphasis is placed upon the new height-time contours of 24-, 12-h tidal amplitudes and phases, which best display height and seasonal structures; where possible high resolution (10 d) is used (Saskatoon), but all stations provide monthly mean resolution. At these latitudes the diurnal tide is generally smaller than the semidiurnal, and displays more variability. However, there is a tendency for vertical wavelengths and amplitudes to be larger during summer months. On occasions in winter and fall, wavelengths may be less than 50 km. The dominant semidiurnal tide shows significant regular season structure; wavelengths are generally small (about 50 km) in winter, large in summer (equal to or greater than 100 km), and these states are separated by rapid equinoctial transitions. There is some evidence for less regularity toward 40 deg. Coupling with mean winds is apparent. Data from earlier ATMAP campaigns are mentioned, and reasons for their inadequacies presented

    Similar works