research

Theoretical studies on flapped delta wings

Abstract

The effects of leading edge flaps on the aerodynamic characteristics of a low aspect-ratio delta wing are studied theoretically. As an extension of the classical crossflow plane analysis and in order to include separated shear layers, an analogy between three dimensional steady conical and two dimensional unsteady self-similar flows is explored. This analogy provides a simple steady-unsteady relationship. The criteria for the validity of the steady-unsteady analogy are also examined. Two different theoretical techniques are used to represent the separated shear layers based on the steady-unsteady analogy, neglecting the trailing edge effect. In the first approach, each vortex system is represented by a pair of concentrated vortices connected to the separation points by straight feeding sheets. In the second approach, the vortex cloud method is adopted for simulating the flow field in the crossflow plane. The separated shear layers are replaced with a cloud of discrete vortices and the boundary element method is employed to represent the wing trace by a vorticity distribution. A simple merging scheme is used to model the core region of the vortical flow as a single vortex by imposing a restriction on the shear layer rotation angle. The results are compared with experiments and with results from 3-D panel calculations

    Similar works