research

Higher order dispersion in the propagation of a gravity wave packet

Abstract

To the first order of approximation, the complex amplitude of a wave packet in an anisotropic and dispersive medium is convected with the group of velocity. However, a gravity wave is a vector wave. Its wave packet must be formed by superposition of various wave numbers with corresponding frequencies, as is the case for scalar waves, and additionally by superposing many eigenmodes which also depend on the wave number. To represent the vector wave packet self-consistently, it is found that a gradient term must be included in the expansion. For a Guassian wave packet, this gradient term is shown to have important implications on the velocity vector as represented by its hodograph. Numerical results show that the hodograph is influenced by the location of the relative position of interest from the center of a Gaussian pulse. Higher order expansion shows that an initial Gaussian wave packet will retain its Gaussian shape as it propagates, but the pulse will spread in all directions with its major axis undergoing a rotation. Numerical results indicate that these higher order dispersive effects may be marginally observable in the atmosphere

    Similar works