research

Axisymmetric shell analysis of the space shuttle solid rocket booster field joint

Abstract

The Space Shuttle Challenger (STS 51-L) accident led to an intense investigation of the structural behavior of the solid rocket booster (SRB) tang and clevis field joints. Results are presented of axisymmetric shell analyses that parametrically assess the structural behavior of SRB field joints subjected to quasi-steady-state internal pressure loading for both the original joint flown on mission STS 51-L and the redesigned joint flown for the first time after the STS 51-L accident on the Space Shuttle Discovery. Discussion of axisymmetric shell modeling issues and details is presented and a generic method for simulating contact between adjacent shells of revolution is described. Results are presented that identify the performance trends of the joints for a wide range of joint parameters. An important finding is that the redesigned joint exhibits significantly smaller O-ring gap changes and much less sensitivity to joint clearances than the original joint. For a wide range of joint parameters, the result presented indicate that the redesigned joint provides a much better pressure seal than the original joint

    Similar works