slides

Computational methods and software systems for dynamics and control of large space structures

Abstract

The deployment, assembly and mission-oriented maneuvering of space structures in orbit will trigger large motions of flexible, truss-type structures. In addition, the presence of on-board controls both for attitude stabilization and specified vibration tolerance requirements may further complicate the dynamic behavior of the orbiting structures. Because of safety and cost considerations, the dynamic response of the combined structural and control systems must be predicted reliably. This need can only be met through the development of reliable and efficient simulation capabilities, since there is general agreement that on-orbit experiments should be limited because of cost, time and facility constraints. The long-term objective of this research effort is to develop a next-generation computer simulator for the dynamics and control of large space structures. The simulator will be based on integrating four research thrusts: a new multibody dynamics formulation methodology, modeling capabilities in long/slender truss-beam components with realistic joints, efficient computational procedures that can be implemented either in sequential or concurrent computers, and prototype simulation modules that can be easily processed into a modern large-scale engineering software system such as the NASA/Computational Structural Mechanics (CSM) testbed

    Similar works