slides
Localization effects in radiationally disordered high-temperature superconductors: Theoretical interpretation
- Publication date
- Publisher
Abstract
Theoretical interpretation of recent experiments on radiationally disordered high-temperature superconductors is presented, based on the concepts of mutual interplay of Anderson localization and superconductivity. Microscopic derivation of Ginzburg-Landau coefficients for the quasi-two-dimensional system in the vicinity of localization transition is given in the framework of the self-consistent theory of localization. The 'minimal metallic conductivity' for the quasi-two-dimensional case is enhanced due to a small overlap of electronic states on the nearest neighbor conducting planes. This leads to a stronger influence of localization effects than in ordinary (three-dimensional) superconductors. From this point of view even the initial samples of high-temperature superconductors are already very close to Anderson transition. Anomalies of H(c2) are also analyzed, explaining the upward curvature of H(c2)(T) and apparent independence of dH(c2)/dT (T = T(sub c)) on the degree of disorder as due to localization effects. Researchers discuss the possible reasons of fast T(sub c) degradation due to the enhanced Coulomb effects caused by the disorder induced decrease of localization length. The appearance and growth of localized magnetic moments is also discussed. The disorder dependence of localization length calculated from the experimental data on conductivity correlates reasonably with the theoretical criterion for suppression of superconductivity in the system with localized electronic states