research

Measurements of long-lived cosmogenic nuclides in returned comet nucleus samples

Abstract

Measurements of long lived cosmic ray produced radionuclides have given much information on the histories and rates of surface evolution for meteorites, the Moon and the Earth. These nuclides can be equally useful in studying cometary histories and post nebular processing of cometary surfaces. The concentration of these nuclides depends on the orbit of the comet (cosmic ray intensity changes with distance from the sun), the depth of the sampling site in the comet surface, and the rate of continuous evolution of the surface (erosion rate of surface materials). If the orbital parameters and the sampling depth are known, production rates of cosmogenic nuclides can be fairly accurately calculated by theoretical models normalized to measurement on lunar surface materials and meteoritic samples. Due to the continuous evaporation of surface materials, it is expected that the long lived radioactivities will be undersaturated. Accurate measurements of the degree of undersaturation in nuclides of different half-lives allows for the determination of the rate of surface material loss over the last few million years

    Similar works