research

Redundancy of space manipulator on free-flying vehicle and its nonholonomic path planning

Abstract

The nonholonomic mechanical structure of space robots and path planning is discussed. The angular momentum conservation works as a nonholonomic constraint while the linear momentum conservation is a holonomic one. Thus, a vehicle with a 6 d.o.f. manipulator is described as a 9 variable system with 6 inputs. This implies the possibility of controlling the vehicle orientation and the joint variables of the manipulator by actuating the joint variables, but only if the trajectory is carefully planned; however, both of them cannot be controlled independently. It means that by assuming feasible-path planning, a system that consists of a vehicle and a 6 d.o.f. manipulator can be utilized as 9 d.o.f. system. Initially, the nonholonomic mechanical structure of space vehicle/manipulator system is shown. Then a path planning scheme for nonholonomic systems is proposed using Lyapunov functions

    Similar works