research

The formation and structure of circumstellar and interstellar dust

Abstract

The intriguing abundance of long linear carbon chain molecules in some dark clouds and in circumstellar shells is still not well understood. Recent laboratory studies which have probed this problem indicate that when carbon vapor nucleates to form particles, linear chains and hollow cage molecules (fullerenes) also form at more-or-less the same time. The results have consequences for the formation, structures and spectroscopic properties of the molecular and dust components ejected from cool carbon-rich stars. A most interesting result of the experimental observations relates to the probability that a third character in addition to the chains and grains, the C(sub 60) molecule probably in the form of the ion C(sub 60)(sup +) in the less shielded regions, is present and perhaps responsible for some of the ubiquitously observed interstellar spectroscopic features such as the Diffuse Interstellar Features, the 2170A UV Absorption or perhaps some of the Unidentified Infrared Bands. Further study of small carbon particles which form in the gas phase has resulted in the discovery that they have quasi-icosahedral spiral shell structures. The role that such species may play in the interstellar medium as well as that played by C(sub 60) (or C sub 60 sup +) should soon be accessible to verification by a combination of laboratory experiment and astronomical spectroscopy

    Similar works