research

A Unique Hybrid Propulsion System Design for Large Space Boosters

Abstract

A study was made of the application of hybrid rocket propulsion technology to large space boosters. Safety, reliability, cost, and performance comprised the evaluation criteria, in order of relative importance, for this study. The effort considered the so called classic hybrid design approach versus a novel approach which utilizes a fuel-rich gas generator for the fuel source. Other trades included various fuel/oxidizer combinations, pressure-fed versus pump fed oxidizer delivery systems, and reusable versus expandable booster systems. Following this initial trade study, a point design was generated. A gas generated-type fuel grain with pump fed liquid oxygen comprised the basis of this point design. This design study provided a mechanism for considering the means of implementing the gas generator approach for further defining details of the design. Subsequently, a system trade study was performed which determined the sensitivity of the design to various design parameters and predicted optimum values for these same parameters. The study concluded that a gas generator hybrid booster design offers enhanced safety and reliability over current of proposed solid booster designs while providing equal or greater performance levels. These improvements can be accomplished at considerably lower cost than for the liquid booster designs of equivalent capability

    Similar works