research

Naturally occurring and forced azimuthal modes in a turbulent jet

Abstract

Naturally occurring instability modes in an axisymmetric jet were studied using the modal frequency technique. The evolution of the modal spectrum was obtained for a jet with a Reynolds number based on a diameter of 400,000 for both laminar and turbulent nozzle boundary layers. In the early evolution of the jet the axisymmetric mode was predominant, with the azimuthal modes growing rapidly but dominating only the end of the potential core. The growth of the azimuthal was observed closer to the nozzle exit for the jet in the laminar boundary layer case than for the turbulent. Target modes for efficient excitation of the jet were determined and two cases of excitation were studied. First, a jet was excited simultaneously by two helical modes, m equals plus 1 and m equals minus 1 at a Strouhal number based on jet diameter of 0.15 and the axisymmetric mode, m equals 0 at a jet diameter of 0.6. Second, m equals plus one and m equals minus 1 at jet diameter equals 0.3 and m equals 0 at jet diameter equals 0.6 were excited simultaneously. The downstream evolution of the hydrodynamic modes and the spreading rate of the jet were documented for each case. Higher jet spreading rates, accompanied by distorted jet cross sections were observed for the cases where combinations of axisymmetric and helical forcings were applied

    Similar works