research

Cloud altitude determination from infrared spectral radiances

Abstract

The CO2 slicing method is generally recognized as the most accurate means of inferring cloud altitude from passive infrared radiance observations. The method is applicable to semi-transparent and broken clouds. During the cirrus FIRE and COHMEX field experiments, CO2 channel radiance data suitable for cloud altitude specification were achieved from moderate spectral resolution satellite sounders (NOAA-TOVS and GOES-VAS) and from a High spectral resolution Interferometer Spectrometer (HIS) flown on the NASA U2/ER2 aircraft. Also aboard the ER2 was a down-looking active lidar unit capable of providing cloud top pressure verifications with high accuracy. A third instrument, the Multispectral Atmospheric Mapping Sensor (MAMS) provided 50 meter resolution infrared window data which is used wtih radiosonde data to verify the heights of middle and low level clouds. Comparisons of lidar and MAMS/radiosonde ground truth cloud heights are made with those determined from: high resolution (0.5/cm) HIS spectra, HIS spectra degraded to the moderate resolution (15/cm) of the VAS/TOVS instruments, and spectrally averaged HIS radiances for individual pairs of VAS spectral channels. The results show that the best results are achieved from high resolution spectra; the RMS difference with the ground truth is 23 mb. The RMS differences between the infrared radiance determination and ground truth increase by 35 percent when the spectral resolution is degraded to the moderate spectral resolution of the VAS/TOVS instruments and by 52 to 183 percent, depending upon channel combinations, when only two spectral channels at VAS/TOVS spectral resolution are used

    Similar works