research

Low cost space power generation

Abstract

The success of this study has given a method of fabricating durable copolymer films without size limitations. Previously, only compression molded samples were durable enough to generate electrical energy. The strengthened specimens are very long lived materials. The lifetime was enhanced at least a factor of 1,300 in full pyroelectric conversion cycle experiments compared with extruded, non-strengthened film. The new techniques proved so successful that the lifetime of the resultant copolymer samples was not fully characterized. The lifetime of these new materials is so long that accelerated tests were devised to probe their durability. After a total of more than 67 million high voltage electrical cycles at 100 C, the electrical properties of a copolymer sample remained stable. The test was terminated without any detectable degradation to allow for other experiments. One must be cautious in extrapolating to power cycle performance, but 67 million electrical cycles correspond to 2 years of pyroelectric cycling at 1 Hz. In another series of experiments at reduced temperature and electrical stress, a specimen survived over one-third of a billion electrical cycles during nearly three months of continuous testing. The radiation-limited lifetimes of the copolymer were shown to range from several years to millions of years for most earth orbits. Thus, the pyroelectric copolymer has become a strong candidate for serious consideration for future spacecraft power supplies

    Similar works