research

Digital cartography of Io

Abstract

A high resolution controlled mosaic of the hemisphere of Io centered on longitude 310 degrees is produced. Digital cartographic techniques were employed. Approximately 80 Voyager 1 clear and blue filter frames were utilized. This mosaic was merged with low-resolution color images. This dataset is compared to the geologic map of this region. Passage of the Voyager spacecraft through the Io plasma torus during acquisition of the highest resolution images exposed the vidicon detectors to ionized radiation, resulting in dark-current buildup on the vidicon. Because the vidicon is scanned from top to bottom, more charge accumulated toward the bottom of the frames, and the additive error increases from top to bottom as a ramp function. This ramp function was removed by using a model. Photometric normalizations were applied using the Minnaert function. An attempt to use Hapke's photometric function revealed that this function does not adequately describe Io's limb darkening at emission angles greater than 80 degrees. In contrast, the Minnaert function accurately describes the limb darkening up to emission angles of about 89 degrees. The improved set of discrete camera angles derived from this effort will be used in conjunction with the space telemetry pointing history file (the IPPS file), corrected on 4 or 12 second intervals to derive a revised time history for the pointing of the Infrared Interferometric Spectrometer (IRIS). For IRIS observations acquired between camera shutterings, the IPPS file can be corrected by linear interpolation, provided that the spacecraft motions were continuous. Image areas corresponding to the fields of view of IRIS spectra acquired between camera shutterings will be extracted from the mosaic to place the IRIS observations and hotspot models into geologic context

    Similar works