thesis

Mixing and non-equilibrium chemical reaction in a compressible mixing layer

Abstract

The effects of compressibility, chemical reaction exothermicity, and non-equilibrium chemical modeling in a reacting plane mixing layer were investigated by means of two dimensional direct numerical simulations. The chemical reaction was irreversible and second order of the type A + B yields Products + Heat. The general governing fluid equations of a compressible reacting flow field were solved by means of high order finite difference methods. Physical effects were then determined by examining the response of the mixing layer to variation of the relevant non-dimensionalized parameters. The simulations show that increased compressibility generally results in a suppressed mixing, and consequently a reduced chemical reaction conversion rate. Reaction heat release was found to enhance mixing at the initial stages of the layer growth, but had a stabilizing effect at later times. The increased stability manifested itself in the suppression or delay of the formation of large coherent structures within the flow. Calculations were performed for a constant rate chemical kinetics model and an Arrhenius type kinetic prototype. The choice of the model was shown to have an effect on the development of the flow. The Arrhenius model caused a greater temperature increase due to reaction than the constant kinetic model. This had the same effect as increasing the exothermicity of the reaction. Localized flame quenching was also observed when the Zeldovich number was relatively large

    Similar works