research

Choice of gauge in 2-photon 1s-2s transition in atomic hydrogen and pseudostate expansions

Abstract

The problem of gauge choice in multiphoton transitions in connection with the proper choice of the unperturbed wave functions require to insure gauge invariance was considered. J. Bassani, J. J. Forney, and A. Quattropani considered the case of 2-photon 1s-2s transition rate for hydrogen, using gauges vector E x vector r and vector A x vector p. Exactly the same results were obtained for the two gauges, but the findings indicate that the vector E x vector r interaction tends to the final result with a small number of intermediate states and is therefore the one to be used in any approximate calculation. Whether the so-called pseudostate expansion method works equally well with either gauge was tested. To accomplish this task, in addition to researching the problem, the FORTRAN programming was learned and a FORTRAN program was constructed for the calculation of the dimensionless 2-photon transition probability amplitude D(v) for 1s-2s transition in Hydrogen as a function as a function of the incident photon frequency v in gauge vector E x vector p at certain values of v, using the pseudostate method. However, some puzzling unresolved difficulties were experienced in the calculation. Then should the pseudostate calculations prove successful for gauge vector E x vector r the method will be applied to gauge vector A x vector p. If successful, then the problem is complete

    Similar works