research

Regulated bioluminescence as a tool for bioremediation process monitoring and control of bacterial cultures

Abstract

An effective on-line monitoring technique for toxic waste bioremediation using bioluminescent microorganisms has shown great potential for the description and optimization of biological processes. The lux genes of the bacterium Vibrio fischeri are used by this species to produce visible light. The lux genes can be genetically fused to the control region of a catabolic gene, with the result that bioluminescence is produced whenever the catabolic gene is induced. Thus the detection of light from a sample indicates that genetic expression from a specific gene is occurring. This technique was used to monitor biodegradation of specific contaminants from waste sites. For these studies, fusions between the lux genes and the operons for naphthalene and toluene/xylene degradation were constructed. Strains carrying one of these fusions respond sensitively and specifically to target substrates. Bioluminescence from these cultures can be rapidly measured in a nondestructive and noninvasive manner. The potential for this technique in this and other biological systems is discussed

    Similar works