research

Effect of sonic boom asymmetry on subjective loudness

Abstract

The NASA Langley Research Center's sonic boom apparatus was used in an experimental study to quantify subjective loudness response to a wide range of asymmetrical N-wave sonic boom signatures. Results were used to assess the relative performance of several metrics as loudness estimators for asymmetrical signatures and to quantify in detail the effects on subjective loudness of varying both the degree and direction of signature loudness asymmetry. Findings of the study indicated that Perceived Level (Steven's Mark 7) and A-weighted sound exposure level were the best metrics for quantifying asymmetrical boom loudness. Asymmetrical signatures were generally rated as being less loud than symmetrical signatures of equivalent Perceived Level. The magnitude of the loudness reductions increased as the degree of boom asymmetry increased, and depended upon the direction of asymmetry. These loudness reductions were not accounted for by any of the metrics. Corrections were determined for use in adjusting calculated Perceived Level values to account for these reductions. It was also demonstrated that the subjects generally incorporated the loudness components of the complete signatures when making their subjective judgments

    Similar works