research

Physical aging and solvent effects on the fracture of LaRC-TPI adhesives

Abstract

When amorphous materials are quenched below their glass transition temperature, excess enthalpy is trapped in the glassy material because the viscosity is too great to allow the material to remain in volumetric equilibrium. Over time, this excess free volume is reduced as the material slowly approaches its equilibrium configuration. This process, known as physical aging, leads to substantial changes in the constitutive behavior of polymers, as has been widely discussed in the literature. Less is known about the effects of this physical aging process on fracture and fatigue properties of aged materials. The original goal of the summer was to investigate the effects of physical aging on the fracture and fatigue behavior of LaRC-TPI, a thermoplastic polyimide developed at NASA-Langley. Preliminary results are reported, although a lack of equipment availability prevented completion of this task. In the process of making specimens, the current LaRC-TPI was observed to be extremely susceptible to environmental stress cracking. A study of the unique failure patterns resulting from this degradation process in bonded joints was conducted and is also reported herein

    Similar works