research

Transonic and supersonic Euler computations of vortex-dominated flow fields about a generic fighter

Abstract

Flow fields about a generic flighter model were computed using FL057, a 3-D, finite volume Euler code. Computed pressure coefficients, forces, and moments at several Mach numbers (0.6, 0.8, 1.2, 1.4, and 1.6) are compared with wind tunnel data over a wide range of angles of attack in order to determine the applicability of the code for the analysis of fighter configurations. Two configurations were studied, a wing-body and a wing-body-chine. FL057 predicted pressure distributions, forces, and moments well at low angles of attack, at which the flow was fully attached. The FL057 predictions were also accurate for some test conditions once the leading edge vortex became well established. At the subsonic speeds, FL057 predicted vortex breakdown earlier than that seen in the experimental results. Placing the chine on the forebody delayed the onset of bursting and improved the correlation between numerical and experimental data at the subsonic conditions

    Similar works