research

Coherent structures in a simulated turbulent mixing layer

Abstract

A direct numerical simulation of a plane turbulent mixing layer has been performed. The simulation was initialized using two turbulent velocity fields obtained from direct numerical simulation of a turbulent boundary layer at momentum thickness Reynolds number 300 (Spalart, 1988). The mixing layer is allowed to evolve long enough for self-similar linear growth to occur, with the visual thickness Reynolds number reaching 14,000. The simulated flow is examined for evidence of the coherent structures expected in a mixing layer (rollers and rib vortices). Before the onset of self-similar growth, such structures are present with properties similar to the corresponding laminar or transitional structures. In the self-similar growth regime, however, only the rollers are present with no indication of rib vortices and no indication of conventional pairing. This results in a reduction of mixing and layer growth

    Similar works