research

Organic synthesis in the outer Solar System: Recent laboratory simulations for Titan, the Jovian planets, Triton and comets

Abstract

We tabulate the most abundant gases and their radiation yields, for two experimental pressures: 0.24 mb, more relevant to upper atmosphere excitation, and 17 mb, more relevant to tropospheric, cosmic ray excitation. The yields computed in the 0.24 mb experiment combined with measured electronic fluxes and a simple, eddy diffusion model of Titan's atmosphere predict abundances of detected molecules in agreement with those found by Voyager and for heavier products, in somewhat better agreement with observation than photochemical absolute reaction rate kinetics models. All Voyager organics are accounted for and no detectable products are found that Voyager did not detect. A striking increase of products with multiple bonds is found with decreasing pressure. Hydrocarbon abundances decline slowly with increasing carbon number. Additionally, we list preliminary estimates for the yield of the heteropolymer, which seems to be produced in a quantity comparable (in moles of C+N consumed) to the total amount of gaseous product. The production rate required to sustain Titan's haze against sedimentation also indicates yields of this order. As can be seen from the table, over 10(exp 9) years substantial amounts of these products can accumulate on the surface -- ranging from cm thickness for the (C+N equals 4) species to a meter or more for HCN and C2H2; we also expect a meter or more of tholins. Similar analyses have been or are being done for the Jovian planets and Triton. Charged particle irradiation of hydrocarbon clathrates or mixed hydrocarbon/water ices produces a range of organic products, reddening and darkening of the ices and characteristic infrared spectra. From such spectra, the predicted emission by fine particles in cometary comae well-matches the observed 3.4 micron emission spectra of Comet Halley and other recent comets. Heliocentric evolution of organic emission features in comets is predicted. Organic products of such ice irradiation may account for colors and albedos on some of the satellites in the outer solar system, especially Triton and Pluto, where solid methane is known to exist

    Similar works