research

Water/rock interactions in experimentally simulated dirty snowball and dirty iceball cometary nuclei

Abstract

In the dirty snowball model for cometary nuclei, comet-nucleus materials are regarded as mixtures of volatile ices and relatively non-volatile minerals or chemical compounds. Carbonaceous chondrite meteorites are regarded as useful analogs for the rocky component. To help elucidate the possible physical geochemistry of cometary nuclei, preliminary results are reported of calorimetric experiments with two-component systems involving carbonaceous chondrites and water ice. Based on collective knowledge of the physics of water ice, three general types of interactions can be expected between water and minerals at sub-freezing temperatures: (1) heterogeneous nucleation of ice by insoluble minerals; (2) adsorption of water vapor by hygroscopic phases; and (3) freezing- and melting-point depression of liquid water sustained by soluble minerals. The relative and absolute magnitude of all three effects are expected to vary with mineral composition

    Similar works