research

Laboratory investigation of visible shuttle glow mechanisms

Abstract

Laboratory experiments designed to uncover mechanistic information about the spectral and spatial characteristics of shuttle glow were conducted. The luminescence was created when a pulse of O atoms traveling at orbital velocities was directed toward NO molecules previously adsorbed to aluminum, nickel, and Z306 Chemglaz (a common baffle black) coated surfaces held at various temperatures. Spectral and spatial measurements were made using a CCD imaging spectrometer. Corroborative spectral information was recorded in separate measurements using a scanning monochromator and gated photomultiplier arrangement. The e-folding distance at several temperatures was calculated from images of the surface glow using the photometrics image processing capability of the imaging spectrometer. The e-folding distance was not altered as a function of incoming O beam velocity. The results are presented and the observations provide direct evidence that the visible shuttle glow results from recombination of oxygen atoms and surface bound NO

    Similar works