research

Reactive control and reasoning assistance for scientific laboratory instruments

Abstract

Scientific laboratory instruments that are involved in chemical or physical sample identification frequently require substantial human preparation, attention, and interactive control during their operation. Successful real-time analysis of incoming data that supports such interactive control requires: (1) a clear recognition of variance of the data from expected results; and (2) rapid diagnosis of possible alternative hypotheses which might explain the variance. Such analysis then aids in decisions about modifying the experiment protocol, as well as being a goal itself. This paper reports on a collaborative project at the NASA Ames Research Center between artificial intelligence researchers and planetary microbial ecologists. Our team is currently engaged in developing software that autonomously controls science laboratory instruments and that provides data analysis of the real-time data in support of dynamic refinement of the experiment control. the first two instruments to which this technology has been applied are a differential thermal analyzer (DTA) and a gas chromatograph (GC). coupled together, they form a new geochemicstry and microbial analysis tool that is capable of rapid identification of the organiz and mineralogical constituents in soils. The thermal decomposition of the minerals and organics, and the attendance release of evolved gases, provides data about the structural and molecular chemistry of the soil samples

    Similar works