research

Swept shock/boundary layer interaction experiments in support of CFD code validation

Abstract

Research on the topic of shock wave/turbulent boundary-layer interaction was carried out during the past three years at the Penn State Gas Dynamics Laboratory. This report describes the experimental research program which provides basic knowledge and establishes new data on heat transfer in swept shock wave/boundary-layer interactions. An equilibrium turbulent boundary-layer on a flat plate is subjected to impingement by swept planar shock waves generated by a sharp fin. Five different interactions with fin angle ranging from 10 deg to 20 deg at freestream Mach numbers of 3.0 and 4.0 produce a variety of interaction strengths from weak to very strong. A foil heater generates a uniform heat flux over the flat plate surface, and miniature thin-film-resistance sensors mounted on it are used to measure the local surface temperature. The heat convection equation is then solved for the heat transfer distribution within an interaction, yielding a total uncertainty of about +/- 10 percent. These experimental data are compared with the results of numerical Navier-Stokes solutions which employ a k-epsilon turbulence model. Finally, a simplified form of the peak heat transfer correlation for fin interactions is suggested

    Similar works