research

Compression through decomposition into browse and residual images

Abstract

Economical archival and retrieval of image data is becoming increasingly important considering the unprecedented data volumes expected from the Earth Observing System (EOS) instruments. For cost effective browsing the image data (possibly from remote site), and retrieving the original image data from the data archive, we suggest an integrated image browse and data archive system employing incremental transmission. We produce our browse image data with the JPEG/DCT lossy compression approach. Image residual data is then obtained by taking the pixel by pixel differences between the original data and the browse image data. We then code the residual data with a form of variable length coding called diagonal coding. In our experiments, the JPEG/DCT is used at different quality factors (Q) to generate the browse and residual data. The algorithm has been tested on band 4 of two Thematic mapper (TM) data sets. The best overall compression ratios (of about 1.7) were obtained when a quality factor of Q=50 was used to produce browse data at a compression ratio of 10 to 11. At this quality factor the browse image data has virtually no visible distortions for the images tested

    Similar works