research

Multiversion software reliability through fault-avoidance and fault-tolerance

Abstract

In this project we have proposed to investigate a number of experimental and theoretical issues associated with the practical use of multi-version software in providing dependable software through fault-avoidance and fault-elimination, as well as run-time tolerance of software faults. In the period reported here we have working on the following: We have continued collection of data on the relationships between software faults and reliability, and the coverage provided by the testing process as measured by different metrics (including data flow metrics). We continued work on software reliability estimation methods based on non-random sampling, and the relationship between software reliability and code coverage provided through testing. We have continued studying back-to-back testing as an efficient mechanism for removal of uncorrelated faults, and common-cause faults of variable span. We have also been studying back-to-back testing as a tool for improvement of the software change process, including regression testing. We continued investigating existing, and worked on formulation of new fault-tolerance models. In particular, we have partly finished evaluation of Consensus Voting in the presence of correlated failures, and are in the process of finishing evaluation of Consensus Recovery Block (CRB) under failure correlation. We find both approaches far superior to commonly employed fixed agreement number voting (usually majority voting). We have also finished a cost analysis of the CRB approach

    Similar works