research

Stress-strain analysis of a (0/90)sub 2 symmetric titanium matrix laminate subjected to a generic hypersonic flight profile

Abstract

Cross ply laminate behavior of Ti-15V-3Cr-3Al-3Sn (Ti-15-3) matrix reinforced with continuous silicon carbide fibers (SCS-6) subjected to a generic hypersonic flight profile was evaluated experimentally and analytically. Thermomechanical fatigue test techniques were developed to conduct a simulation of a generic hypersonic flight profile. A micromechanical analysis was used. The analysis predicts the stress-strain response of the laminate and of the constituents in each ply during thermal and mechanical cycling by using only constituent properties as input. The fiber was modeled using a thermo-viscoplastic constitutive relation. The fiber transverse modulus was reduced in the analysis to simulate the fiber matrix interface failure. Excellent correlation was found between measured and predicted laminate stress-strain response due to generic hypersonic flight profile when fiber debonding was modeled

    Similar works