research

Modeling fatigue crack growth in cross ply titanium matrix composites

Abstract

In this study, the fatigue crack growth behavior of fiber bridging matrix cracks in cross-ply SCS-6/Ti-15-3 and SCS-6/Timetal-21S laminates containing center holes was investigated. Experimental observations revealed that matrix cracking was far more extensive and wide spread in the SCS-6/Ti-15-3 laminates compared to that in the SCS-6/Timetal-21S laminates. In addition, the fatigue life of the SCS-6/Ti-15-3 laminates was significantly longer than that of the SCS-6/Timetal-21S laminates. The matrix cracking observed in both material systems was analyzed using a fiber bridging (FB) model which was formulated using the boundary correction factors and weight functions for center hole specimen configurations. A frictional shear stress is assumed in the FB model and was used as a curve fitting parameter to model matrix crack growth data. The higher frictional shear stresses calculated in the SCS-6/Timetal-21S laminates resulted in lower stress intensity factors in the matrix and higher axial stresses in the fibers compared to those in the SCS-6/Ti-15-3 laminates at the same applied stress levels

    Similar works