The Effect of the Angle of Afterbody Keel on the Water Performance of a Flying-Boat Hull Model

Abstract

NACA model 11-C was tested according to the general method with the angle of afterbody keel set at five different angles from 2-1/2 degrees to 9 degrees, but without changing other features of the hull. The results of the tests are expressed in curves of test data and of non-dimensional coefficients. At the depth of step used in the tests, 3.3 percent beam, the smaller angles of afterbody keel give greater load-resistance ratios at the hump speed and smaller at high speed than the larger angles of afterbody keel. Comparisons are made of the load-resistance ratios at several other points in the speed range. The effect of variation of the angle of afterbody keel upon the take-off performance of a hypothetical flying boat of 15,000 pounds gross weight having a hull of model 11-C lines is calculated, and the calculations show that the craft with the largest of the angles of afterbody keel tested, 9 degrees, takes off in the least time and distance

    Similar works