Full-scale Wind-tunnel and Flight Test of a Fairchild 22 Airplane Equipped with a Zap Flap and Zap Ailerons

Abstract

A wing equipped with a Zap flap and Zap ailerons was tested on a Fairchild 22 airplane in the full-scale wind tunnel and in flight to determine the effect of the flaps and ailerons on the performance and the control characteristics of the airplane. The flaps were 0.30 of the wing chord and 0.83 of the wing span. Two sets of ailerons having equal areas but different proportions were tested, one set being 0.56 of the semispan and 0.18 of the chord and the other set being 0.46 of the semispan and 0.22 of the chord. The wind-tunnel tests showed that, when the ailerons and horizontal tail surfaces were removed, the flaps increased the maximum lift coefficient from 1.48 to 2.39. In flight, the fully deflected flaps decreased the minimum speed from 48.2 to 38.8 miles per hour. The take-off and landing distances were both reduced by the flaps. The wind-tunnel tests showed the ailerons to increase the drag coefficient, at a lift coefficient and Reynolds Number corresponding to the high speed of the airplane, from 0.0432 to 0.0498 and 0.0514, the 0.46 semispan ailerons giving the highest drag. In the flight tests both sets of ailerons were found to give satisfactory rolling action in the normal-flight range. They required relatively large stick forces for their operation, however, and the variation of the forces with aileron deflection was not linear

    Similar works