The aerodynamics of a wind-tunnel fan

Abstract

The vortex blade-element theory modified to apply to an axial fan working in a duct is reviewed. Thrust and power coefficients for a fan are identified with the corresponding coefficients for airplane propellers. The relation of pressure produced by the fan to the blade-element coefficients is developed. The distribution of axial velocity of fluid through a fan is assumed to be controlled by the fan itself. The radial distribution of tangential velocity imported by the fan to fluid moving through the fan is shown to be independent of the axial-velocity distribution. A nondimensional coefficient, designated the rotation constant, is introduced. This constant is based solely upon design information. The use of the rotation constant in simplifying the design of a fan for a specific operating condition is demonstrated. Based on the use of the rotation constant, a graphical method is outlined by which the performance of a given fan in a given wind tunnel may be predicted and by which the distributions of axial velocity of the fluid through the fan under various operating conditions may be established

    Similar works