Flight and Wind-tunnel Tests of an XBM-1 Dive Bomber

Abstract

Results are given of pressure-distribution measurements made in flight over the right wing cellule and the right half of the horizontal tail surfaces of a dive-bombing biplane. Simultaneous measurements were also taken of the air speed, control-surface positions, control forces, and normal accelerations during various abrupt maneuvers in vertical plane. These maneuvers consisted of push-downs and pull-ups from level flight, dives and dive pull-ups from inverted flight. Besides the pressure measurements, flight tests were made to obtain (1) wing-fabric deflections during dives and (2) variation of the minimum drag coefficient with Reynolds Number. Supplementary tests were also done in the full-scale wind tunnel to obtain the characteristics of the airplane under various propeller conditions and with various tail settings. The results indicate that: (1) by increasing the fabric deflection between pressure ribs, the span load distribution was considerably modified near the center and the wing moment relations were changed; and (2) the minimum drag was less for the idling propeller than for the propeller locked in a vertical position. The value of C(sub D sub min) was equal to K(Reynolds Number)(exp -0.03) for a range from 2,800,000 to 13,100,000

    Similar works