Full-scale Investigation of Cooling Shroud and Ejector Nozzle for a Turbojet Engine : Afterburner Installation

Abstract

A full-scale ejector cooling investigation was made on a turbojet engine - afterburner installation in the NACA Lewis altitude wind tunnel. Ejector performance was studied at primary exhaust-gas temperatures from 2700 degrees to 3400 degrees R (corresponding to ejector temperature ratios from 2.0 to 5.0), primary pressure ratios from 1.79 to 3.4, secondary air flows up to 29 percent of the primary gas flow, and for diameter ratios from 1.08 to 1.42 and spacing ratios from 0.04 to 1.16. In addition, variations were made in the primary exhaust-nozzle area. Ejectors with large diameter ratios permit the attainment of high gas flow ratios, but the jet-thrust losses become prohibitive as the spacing ratio is increased from 0 to 0.16. As the ejector diameter is reduced, the obtainable gas-flow ratio and the thrust loss are reduced. Previous results showing that data obtained at a temperature ratio of 1.0 could not be extrapolated to determine ejector performance at high temperature ratios by the application of the temperature ratio factor to the gas-flow ratios are substantiated by the present investigation

    Similar works