Effect of variable viscosity and thermal conductivity on high-speed slip flow between concentric cylinders

Abstract

The differential equations of slip flow, including the Burnett terms, were first solved by Schamberg assuming that the coefficients of viscosity and heat conduction of the gas were constants. The problem is solved herein for variable coefficients of viscosity and thermal conductivity by applying a transformation leading to an iteration method. The method, starting with the solution for constant coefficients, enables one to approximate the solution for variable coefficients very closely after one or two steps. Satisfactory results are shown to follow from Schamberg's solution by using his values of the constant coefficients multiplied by a constant factor 'N', leading to what are denoted as the effective coefficients of viscosity and thermal conductivity

    Similar works