Two-dimensional compressible flow in turbomachines with conic flow surfaces

Abstract

A general method of analysis is developed for two-dimensional, steady, compressible flow in stators or rotors of radial and mixed flow turbomachines with conic flow surfaces (surfaces of right circular cones generated by center line of flow passage in the axial-radial plane). The variables taken into account are: (1) tip speed of the rotor, (2) flow rate, (3) blade shape, (4) variation in passage height with radius, (5) number of blades, and (6) cone angle of the flow surface. Relaxation methods are used to solve the nonlinear differential equation for the stream function. Two numerical examples are presented; one for compressible and the other for incompressible flow in a centrifugal compressor with thin, straight blades. The results of these examples are given by plots of the streamlines, constant velocity-ratio lines, and constant pressure-ratio line

    Similar works