Tests of Five Full-Scale Propellers in the Presence of a Radial and a Liquid-Cooled Engine Nacelle, Including Tests of Two Spinners
- Publication date
- Publisher
Abstract
Wind-tunnel tests are reported of five 3-blade 10-foot propellers operating in front of a radial and a liquid-cooled engine nacelle. The range of blade angles investigated extended from 15 degrees to 45 degrees. Two spinners were tested in conjunction with the liquid-cooled engine nacelle. Comparisons are made between propellers having different blade-shank shapes, blades of different thickness, and different airfoil sections. The results show that propellers operating in front of the liquid-cooled engine nacelle had higher take-off efficiencies than when operating in front of the radial engine nacelle; the peak efficiency was higher only when spinners were employed. One spinner increased the propulsive efficiency of the liquid-cooled unit 6 percent for the highest blade-angle setting investigated and less for lower blade angles. The propeller having airfoil sections extending into the hub was superior to one having round blade shanks. The thick propeller having a Clark y section had a higher take-off efficiency than the thinner one, but its maximum efficiency was possibly lower. Of the three blade sections tested, Clark y, R.A.F. 6, and NACA 2400-34, the Clark y was superior for the high-speed condition, but the R.A.F. 6 excelled for the take-off condition