A method for calculating the lift and center of pressure of wing-body-tail combinations at subsonic, transonic, and supersonic speeds

Abstract

A method is presented for calculating the lift and pitching-moment characteristics of circular cylindrical bodies in combination with triangular, rectangular, or trapezoidal wings or tails through the subsonic, transonic, and supersonic speed ranges. The method covers unbanked wings, sweptback leading edges or sweptforward trailing edges, low angles of attack, and the effects of wing and tail incidence. The wing-body interference is handled by the method presented in NACA RM's A51J04 and A52B06, and the wing-tail interference is treated by assuming one completely rolled-up vortex per wing panel and evaluating the tail load by strip theory. A computing table and set of design charts are presented which reduce the calculations to routine operations. Comparison is made between the estimated and experimental characteristics for a large number of wing-body and wing-body-tail combinations. Generally speaking, the lifts were estimated to within plus-or-minus 10 percent and the centers of pressure were estimated to within plus-or-minus 0.02 of the body length. The effect of wing deflection on wing-tail interference at supersonic speeds was not correctly predicted for triangular wings with supersonic leading edges

    Similar works