Valsalva maneuver: Insights into baroreflex modulation of human sympathetic activity

Abstract

Valsalva's maneuver, voluntary forced expiration against a closed glottis, is a well-characterized research tool, used to assess the integrity of human autonomic cardiovascular control. Valsalva straining provokes a stereotyped succession of alternating positive and negative arterial pressure and heart rate changes mediated in part by arterial baroreceptors. Arterial pressure changes result primarily from fluctuating levels of venous return to the heart and changes of sympathetic nerve activity. Muscle sympathetic activity was measured directly in nine volunteers to explore quantitatively the relation between arterial pressure and human sympathetic outflow during pressure transients provoked by controlled graded Valsalva maneuvers. Our results underscore several properties of sympathetic regulation during Valsalva straining. First, muscle sympathetic nerve activity changes as a mirror image of changes in arterial pressure. Second, the magnitude of sympathetic augmentation during Valsalva straining predicts phase 4 arterial pressure elevations. Third, post-Valsalva sympathetic inhibition persists beyond the return of arterial and right atrial pressures to baseline levels which reflects an alteration of the normal relation between arterial pressure and muscle sympathetic activity. Therefore, Valsalva straining may have some utility for investigating changes of reflex control of sympathetic activity after space flight; however, measurement of beat-to-beat arterial pressure is essential for this use. The utility of this technique in microgravity can not be determined from these data. Further investigations are necessary to determine whether these relations are affected by the expansion of intrathoracic blood volume associated with microgravity

    Similar works