Optimal Synthesis of Hot Composite Laminates with Interphase Layers

Abstract

A method for the optimal grading of a single interphase layer in metal matrix composite laminates for the minimization of residual stresses is described. The capability to simultaneously tailor some fabrication parameters is also incorporated. Applications for unidirectional, cross-ply and quasi-isotropic Graphite/Copper laminates are investigated to assess the potential of interphase layer in reducing matrix residual stresses in various laminate configurations. Simultaneous optimization of interphase and fabrication characteristics appears to be more effective in decreasing residual stresses. The results also indicate that the interphase layer is more effective in lowering residual stresses in unidirectional composites and selectively within individual plies of a laminate. Embedded interphase layers in all the plies did not produce a significant global reduction in residual stresses

    Similar works