Analysis of the GOES 6.7 micrometer channel observations during FIRE 2

Abstract

Clouds form in moist environments. FIRE Phase II Cirrus Implementation Plan (August, 1990) noted the need for mesoscale measurements of upper tropospheric water vapor content. These measurements are needed for initializing and verifying numerical weather prediction models and for describing the environment in which cirrus clouds develop and dissipate. Various instruments where deployed to measure the water vapor amounts of the upper troposphere during FIRE II (e.g. Raman lidar, CLASS sonds and new cryogenic frost hygrometer on-board aircraft). The formation, maintenance and dissipation of cirrus clouds involve the time variation of the water budget of the upper troposphere. The GOES 6.7 mu m radiance observations are sensitive to the upper tropospheric relative humidity, and therefore proved extremely valuable in planning aircraft missions during the field phase of FIRE II. Warm 6.7 mu m equivalent black body temperatures indicate a relatively dry upper troposphere and were associated with regions generally free of cirrus clouds. Regions that were colder, implying more moisture was available may or may not have had cirrus clouds present. Animation of a time sequence of 6.7 mu m images was particularly useful in planning various FIRE missions. The 6.7 mu m observations can also be very valuable in the verification of model simulations and describing the upper tropospheric synoptic conditions. A quantitative analysis of the 6.7 mu m measurement is required to successfully incorporate these satellite observations into describing the upper tropospheric water vapor budget. Recently, Soden and Bretherton (1993) have proposed a method of deriving an upper tropospheric humidity based on observations from the GOES 6.7 mu m observations. The method is summarized in the next section. In their paper they compare their retrieval method to radiance simulations. Observations were also compared to ECMWF model output to assess the model performance. The FIRE experiment provides a unique opportunity to further verify the GOES upper tropospheric relative humidity retrieval scheme by providing (1) aircraft observations to cross-validate the calibration of the GOES 6.7 mu m channel, (2) accurate upper tropospheric water vapor concentrations for verification, and (3) veritical variability of upper tropospheric water vapor

    Similar works