Altitude Performance and Operational Characteristics of 29-inch-diameter Tail-pipe Burner with Several Fuel Systems and Flame Holders on J35 Turbojet Engine

Abstract

An investigation of turbojet-engine thrust augmentation by means of tail-pipe burning has been conducted in the NACA Lewis altitude wind tunnel. Several fuel systems and flame holders were investigated in a 29-inch-diameter tail-pipe burner to determine the effect of fuel distribution and flame-holder design on tail-pipe-burner performance and operational characteristics over a range of simulated flight conditions. At an altitude of 5000 feet, the type of flame holder used had only a slight effect on the combustion efficiency. As the altitude was increased, the decrease in peak combustion efficiency became more rapid as the blocking area of the flame holder was reduced. At all altitudes investigated, an improvement in the uniformity of the radial distribution of fuel and air slightly increased the peak combustion efficiencies and shifted the peak combustion efficiency to higher tail-pipe fuel-air ratios. The use of an internal cooling liner extending the full length of the tail-pipe combustion chamber provided adequate shell cooling at all flight conditions investigated

    Similar works