Control of flexible structures with distributed sensing and processing

Abstract

Technology is being developed to process signals from distributed sensors using distributed computations. These distributed sensors provide a new feedback capability for vibration control that has not been exploited. Additionally, the sensors proposed are of an optical and distributed nature and could be employed with known techniques of distributed optical computation (Fourier optics, etc.) to accomplish the control system functions of filtering and regulation in a distributed computer. This paper extends the traditional digital, optimal estimation and control theory to include distributed sensing and processing for this application. The design model assumes a finite number of modes which make it amenable to empirical determination of the design model via familiar modal-test techniques. The sensors are assumed to be distributed, but a finite number of point actuators are used. The design process is illustrated by application to a Euler beam. A simulation of the beam is used to design an optimal vibration control system that uses a distributed deflection sensor and nine linear force actuators. Simulations are also used to study the influence of design and processing errors on the performance

    Similar works