Prediction modeling of physiological responses and human performance in the heat with application to space operations

Abstract

This institute has developed a comprehensive USARIEM heat strain model for predicting physiological responses and soldier performance in the heat which has been programmed for use by hand-held calculators, personal computers, and incorporated into the development of a heat strain decision aid. This model deals directly with five major inputs: the clothing worn, the physical work intensity, the state of heat acclimation, the ambient environment (air temperature, relative humidity, wind speed, and solar load), and the accepted heat casualty level. In addition to predicting rectal temperature, heart rate, and sweat loss given the above inputs, our model predicts the expected physical work/rest cycle, the maximum safe physical work time, the estimated recovery time from maximal physical work, and the drinking water requirements associated with each of these situations. This model provides heat injury risk management guidance based on thermal strain predictions from the user specified environmental conditions, soldier characteristics, clothing worn, and the physical work intensity. If heat transfer values for space operations' clothing are known, NASA can use this prediction model to help avoid undue heat strain in astronauts during space flight

    Similar works