The effects of Above Real-Time Training (ARTT) in an F-16 simulator

Abstract

In this application of above real-time training (ARTT), 24 mission-capable F-16 pilots performed three tasks on a part-task F-16A flight simulator under varying levels of time compression (i.e., 1.0x, 1.5x, 2.0x, and random). All subjects were then tested in a real-time (1.0x) environment. The three tasks under study were an emergency procedure (EP) task, a one versus two air combat maneuvering (ACM) task, and a stern conversion or air intercept task. All ARTT pilots performed the EP task with 28 percent greater accuracy and were better at dealing with a simultaneous MIG threat, reflected by a six-fold increase in the number of MIG kills compared to a real-time control group. In the stern conversion task, there were no statistical differences between groups. In the ACM task, those pilots trained in the mixed time accelerations were faster to acquire lock and were faster to kill both MIG threats than the other groups. These findings are generally consistent with previous findings that show positive effects of task variations (including time variations) during training. Also discussed are related research findings that support the benefits of ARTT and ARTT's impact on emergency procedure training. Further, a synthesis of multidiscipline research outlining the underlying theoretical basis for ARTT is presented. A proposed model of ARTT based on an analogy to Einstein's theory of special relativity is suggested. Conclusions and an outline of future research directions are presented. Successful current commercialization efforts are related as well as future efforts

    Similar works