From minerals to rocks: Toward modeling lithologies with remote sensing
- Publication date
- Publisher
Abstract
High spectral resolution imaging spectroscopy will play an important role in future planetary missions. Sophisticated approaches will be needed to unravel subtle, super-imposed spectral features typically of natural systems, and to maximize the science return of these instruments. Carefully controlled laboratory investigations using homogeneous mineral separates have demonstrated that variations due to solid solution, changes in modal abundances, and the effects of particle size are well understood from a physical basis. In many cases, these variations can be modeled quantitatively using photometric models, mixing approaches, and deconvolution procedures. However, relative to the spectra of individual mineral components, reflectance spectra of rocks and natural surfaces exhibit a reduced spectral contrast. In addition, soils or regolith, which are likely to dominate any natural planetary surface, exhibit spectral properties that have some similarities to the parent materials, but due to weathering and alteration, differences remain that cannot yet be fully recreated in the laboratory or through mixture modeling. A significant challenge is therefore to integrate modeling approaches to derive both lithologic determinations and include the effects of alteration. We are currently conducting laboratory investigations in lithologic modeling to expand upon the basic results of previous analyses with our initial goal to more closely match physical state of natural systems. The effects of alteration are to be considered separately