A new model for estimating total body water from bioelectrical resistance

Abstract

Estimation of total body water (T) from bioelectrical resistance (R) is commonly done by stepwise regression models with height squared over R, H(exp 2)/R, age, sex, and weight (W). Polynomials of H(exp 2)/R have not been included in these models. We examined the validity of a model with third order polynomials and W. Methods: T was measured with oxygen-18 labled water in 27 subjects. R at 50 kHz was obtained from electrodes placed on the hand and foot while subjects were in the supine position. A stepwise regression equation was developed with 13 subjects (age 31.5 plus or minus 6.2 years, T 38.2 plus or minus 6.6 L, W 65.2 plus or minus 12.0 kg). Correlations, standard error of estimates and mean differences were computed between T and estimated T's from the new (N) model and other models. Evaluations were completed with the remaining 14 subjects (age 32.4 plus or minus 6.3 years, T 40.3 plus or minus 8 L, W 70.2 plus or minus 12.3 kg) and two of its subgroups (high and low) Results: A regression equation was developed from the model. The only significant mean difference was between T and one of the earlier models. Conclusion: Third order polynomials in regression models may increase the accuracy of estimating total body water. Evaluating the model with a larger population is needed

    Similar works