Core-centering of compound drops in capillary oscillations: Observations on USML-1 experiments in space

Abstract

AA Using the existing inviscid theories, an attempt is made to explain the centering of the oscillating liquid shell. Experiments on liquid shells and liquid-core compound drops were conducted using acoustic levitation, in a low-gravity environment during a Space Shuttle flight. It was observed that their inner and outer interfaces became concentric when excited into capillary oscillations. Using the existing inviscid theories, and attempt is made to explain the centering of the oscillating liquid shell. It is concluded that viscosity needs to be considered in order to provide a realistic description of the centering process

    Similar works