A tool for manual endmember selection and spectral unmixing

Abstract

Sampling a continuous radiance spectrum in many narrow contiguous spectral bands results in a high covariance between the bands. Hence, the true dimensionality of imaging spectrometer data is not determined by the number of spectral bands, but by the number of spectrally unique signatures whose mixtures reproduce the spectral variance observed in an image. Methods to unmix high dimensional multispectral data use principal components analysis to reduce the dimensionality. The variance of the spectral data is modeled as a linear combination of a finite set of endmembers in the space of the eigen-vectors that account for most of the variance. The number and characteristics of these endmembers are determined not only by the number and characteristics of the spectrally unique materials on the surface but also by processes (e.g., illumination, atmospheric scattering and absorption) affecting the signal received by the sensor. Selection of endmember spectra has typically been from a library. However, since most libraries are incomplete and do not account for the processes mentioned above, we have devised a computer display that allows researchers to explore interactively the eigenvector space of a representative and mean-corrected subset of the image data in search of extreme spectra to designate as endmembers. This display, which is based on parallel coordinates, is unique in the area of multidimensional visualization in that it includes not only a passive view of higher dimensional data but also the capability to interact and move geometrical objects in higher dimensional spaces

    Similar works